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Abstract - If the Internet is the in-
formation highway of industrial civiliza-
tion, REST APIs have become the gate-
ways through which this information finds
its way to be consumed, stored, processed,
and mined for value and capital gain. Every
organization makes use of these interfaces
in some way or another, from a simple per-
sonal website to the most ambitious Al en-
terprise. As a result, it makes them usually
the first target of an attacker as well as the
first place in which disruptions over a dis-
tributed system are detected. In this paper
we will explore the state of the art of REST
API security through the research and de-
velopment of a secure architecture that fol-
lows zero trust principles as well as a pro-
posed reference implementation. This ref-
erence implementation will simulate a crit-
ical military application operating in a cy-
berwarfare scenario in which it will need to
maintain secure operation in a hostile net-
work such as the open Internet using Zero
Trust REST API design principles and pro-
tocols over a cloud native environment. A
security test battery will also be provided to
verify the correct implementation of this se-

cure architecture.
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1. Introduction

The objective of this assignment is to create
a secure REST API using zero trust archi-
tectural patterns, principles and tenets with
the purpose of exploring different technolo-
gies and security protocols that can be used
in cloud environments, thus providing a ref-

erence implementation for further work in
industry and academia.

In order to successfully develop a zero
trust REST API we will follow a series of
steps.

Our approach will begin by presenting
on what is formally considered Zero Trust
by NIST in order to create a set of for-
mal security requirements that would qual-
ify for a Zero Trust Architecture or ZTA.
We will then present an example REST
API application that will formalize a set
of functional and security requirements that
we will implement as a demo with specific
open-source technologies that will allow us
to explore the concepts of Zero Trust and
secure architectures in a practical manner.
This application will be designed to run in a
cloud native environment using Kubernetes.
We will then assemble a test battery to ver-
ify that all the security requirements have
been satisfied and will finish with the con-
clusions of this practical project.

II. Previous Work

Other works of research have already been
made since the first publication of NIST and
the concept of Zero Trust has become the
driving target for security engineering in the
area. One of such publications is "Securing
API-Based Integrations in Federated Cloud
Architectures: A Zero Trust Perspective"
[1]. In this article, one of the most inter-
esting contributions is a framework for API
Integrations that establishes a chain of pro-
cesses that must be implemented on Zero
Trust APIs. A diagram can be examined in
figure 1.
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Fig. 1. General Framework for Zero Trust API
Integrations[ 1]

Similar concepts and definitions are also
provided in "Designing Secure Microser-
vices Architectures: Identity Management,
API Security, and Zero Trust Approaches"”
[2], which introduces several technology
recommendations such as Istio for the Ser-
vice Mesh implementation, common fea-
tures expected of API gateways as well
as specialized back-ends for each front-
end, and token management best practices.
Further previous work can be found in
"Cutting-Edge Practices for Securing APIs
in FinTech:

curity Models and Zero Trust Architec-

Implementing Adaptive Se-

ture" [3] which examines the challenges of
API security with a particular focus on the
FinTech sector, proposing general princi-
ples such as "verify every request"”, "least-
privilege access" and "microsegmentation”
using the same security protocols such as
JWTs, Mutual TLS and OpenID Connect,
as exposed by other authors.

Definition of a REST API

REST APIs belong to a family of protocol
definition architectures that are defined on
RFC9205 to be under the following condi-
tions [4].

e Uses the transport port 80 or 443, or

e Uses the URI scheme "http" or
"https", or

Uses an ALPN protocol ID that
generically identifies HTTP (e.g.,
"http/l.ln, "h2", ”h3”), or

e Makes registrations in or overall
modifications to the IANA registries
defined for HTTP

There are many motivations for using
these technologies for application develop-
ment in the modern web such as the fa-
miliarity of stakeholders, availability of ex-
isting clients, server and proxy implemen-
tations, ease of use, availability of web
browsers, presence of HTTP servers and
clients in target deployments as well as its
ability to traverse firewalls [4]. However,
one of the most important reasons from a
security perspective will be that we will be
able to reuse existing security mechanisms
such as authentication and encryption via
TLS. From an application development per-
spective, the RFC9205 exposes the follow-
ing advantages:

e Generic semantics: Potentially ap-
plicable for every resource and not
specific of any particular application
context with a well defined behavior
for methods, header fields or status
codes.

e Links: Which establishes a well de-
fined namespace for accessing re-
sources in a specific application by
routing requests to different con-
trollers on the application, as well
as providing a natural mechanism for
extensibility, versioning and capabil-
ity management.



e Rich Functionality: Such as mes-
TLS
integration, support for intermedi-

sage framing, multiplexing,
aries, client authentication, content
negotiation for format and language,
caching, precise granularity of access
control, partial content to selectively
request part of a response, and the
ability to interact with the application
easily using a web browser.

All this advantages have popularized
this way of building distributed systems on
the web, raising concerns regarding their
cybersecurity, making organizations such as
OWASP to keep track of the most common
attack patterns, listed on annex C.

Definition of a Zero Trust Architecture

According to NIST [5], Zero Trust is the
term for an evolving set of cybersecurity
paradigms that move defenses from static,
network-based perimeters and policies to-
wards focusing on users, assets and re-
sources. Trust is defined as the set of as-
sumptions by which a system makes de-
cisions, in this case we are talking about
authentication and authorization decisions.
A Zero Trust Architecture or ZTA is one
that assumes that there is no implicit trust
granted to assets or user accounts based
solely on their location or ownership. Thus,
authentication and authorization functions
are executed every time a session is es-
tablished [5]. This presents itself in con-
trast to more traditional approaches such
as perimeter security technologies such as
firewalls and VPNs, which attempt to di-
vide the world into trusted and untrusted
domains. These systems are effective at

protecting from attackers coming from the

Internet, but drastically less effective at
enforcing a high level of security against
threats once they are able to breach into the
trusted environment.

This gives rise to the concept of im-
plicit trust zone, which represents the area
or surface where all the entities are trusted
at least to the level of the last policy en-
forcement point [5]. In the previous exam-
ple, the implicit trust zone would be the in-
ternal network and the policy enforcement
point would be the firewall or VPN server.

We will see in the following paragraphs
that what zero trust architectures pretend to
achieve is to reduce the size of the implicit
trust zone as much as technically and prac-
tically possible. This is done by deploy-
ing strong authentication and authorization
mechanisms on a policy enforcement point,
which will be located as close to the re-
source to be protected as possible.

For example, instead of dividing the
world into a trusted and untrusted network
by the source of the packets, which can
be easily spoofed in current IP networks, a
next generation firewall could be integrated
with a VPN to which individual hosts need
to authenticate themselves to by using a per-
client shared secret, establish a secure tun-
nel to the VPN server in which traffic is en-
crypted and routed to each host according to
a network policy using the identities used in
the authentication, which are much harder
to spoof. In existing zero trust architectures,
a variation that fits this description is the re-
source portal model. This setup drastically
reduces the implicit trust zone from a whole
network to a host-to-host level.

Formally speaking, Zero Trust security
focuses on protecting discrete and individ-



ual information resources such as assets,
services, workflows or network accounts,
Each of these
resources should have a specific and well

instead of whole networks.

defined identity that needs to be authenti-
cated and authorized at every session or re-
quest [5].

For example, there are authorization
protocols such as OAuth 2.0 PKCE that
provide strong authorization and authenti-
cation guarantees that reduce the size of this
implicit trust zone to individual processes in
a host. This security model assumes that the
host machine where this process is running
might be infected by malware with read ac-
cess via a side channel such as log files [6].

In other words, the main objective is to
prevent unauthorized access to data and ser-
vices coupled with making the enforcement
of access control as granular as possible [5].
We have included a summary of the main
Zero Trust tenets on annex B for reference.

In addition to these tenets, NIST de-
fines a set of core zero trust logical compo-
nents for any Zero Trust Architecture [5].
These components are basic terminology to
be used, as they provide a common frame of
reference for its design and development.

e Policy Engine (PE): Responsible for
processing the policy and the avail-
able data to make the decision to
grant access to a resource for a given
subject.

e Policy Administrator (PA): Respon-
sible for establishing and/or shutting
down the communication path be-
tween a subject and a resource by
generating session-specific authenti-
cation and authentication token or
credential used by a client.

e Policy Enforcement Point (PEP): Re-
sponsible for enabling, monitoring,
and eventually terminating connec-
tions between a subject and an enter-
prise resource by receiving policy up-
dates from the PA.

NIST also defines additional compo-
nents to inform the PE with additional data
sources from which we will focus on the
most desirable ones for our application.
These are a network and system activity
logs, enterprise public key infrastructure or
PKI, an ID management system and a SIEM
system. We will mention these systems, but
will leave their implementation out of the
scope of this assignment as architecture de-
cisions for the integration of this solution
into a larger system.

With awareness of these concepts, NIST
considers three architectural principles to
design a ZTA [5].

e Enhanced Identity Governance: By
using the authenticated identity of ac-
tors and their assigned attributes as
the key component of policy creation.

o Micro-Segmentation: Placing indi-
vidual or groups of resources on a
unique network segment protected by
a gateway security component as PA
that controls a set of PEPs deployed
as agents that shields the resources

from unauthorized access or discov-
ery.

e Network Infrastructure and Software
Defined Perimeters: Involves using a
software defined overlay network in
which the PA acts as a network con-
troller that sets up and reconfigured
the network based on the decisions
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made by the PE, the clients request
access via PEPs, which act as prox-
ies.

Lets consider an example, we can define
policies that apply to signed data regarding
the users and resources of an application
to sign assertions of properties about them.
This establishes a trusted data structure to
make policy decisions for either authentica-
tion or authorization.

This is the idea behind JWTs or JSON
Web Tokens, which are basic JSON ob-
jects cryptographically signed when deliv-
ered to the client and verified upon arrival
to a PEP. The fact that they are asigned al-
lows for a verification that authenticates the
client, the fact that the claims they contain
are integrity protected allows the receiver of
the JWT to make an authorization decision
with the assurance that this request belongs
to the user this JWT was previously deliv-
ered during user authentication. The pur-
pose of enhanced identity governance is to
minimize identity groups as much as pos-
sible, to the point of enforcing a policy per
each identity.

In order to enable this, we will need to
establish a certificate and identity manage-
ment strategy in order for the entities of the
system to sign the data they produce. When
using certificates of identity, a PKI or Pub-
lic Key Infrastructure is generally used. For
the sake of simplicity in this project, we
will just share the CA certificate between
the clients and the server API, a more com-
plex PKI is left as future work.

In the same application we can also use
resource compartmentalization to achieve
micro-segmentation, which is a logical con-
clusion from tenets ZTA:01 and ZTA:03

given that once we minimize the implicit
trust zone of the resources and put a PEP
in front of them, we obtain a unit of access
control at which both authentication and au-
thorization can occur. One of the main ad-
vantages of this concept is that it drastically
reduces the capability of an attacker to enu-
merate targets as well as limiting its move-
ment in the case exploitation is achieved,
given that the adversary needs a success-
ful authentication and authorization to ac-
cess each new implicit trust zone breached.
From a logging perspective, strong non-
repudiation can be achieved once we can
map the actions that an integrity-protected
and authenticated identity such as a JWT
has executed over the resources of a sys-
tem, enabling rapid and precise investiga-
tions upon an incident. JWTs may be stolen
if the communication is insecure, but they
can be set with a validity period of min-
utes to reduce the attack window the adver-
sary has after interception. If higher secu-
rity is needed, JWTs can be configured with
a counter, which further diminishes the ca-
pability of an adversary to replay it.

The third variation focuses on network
security, the implicitly trusted zone be-
comes the network perimeter to be mini-
mized and protected behind a PEP imple-
mented as a network proxy. This implicitly
trusted zone might be at the network level,
at the host level, or at the process port level.

For the development of this thesis, we
will use a mix of these variations, given that
we want to design a secure network appli-
cation with an access control model based
on identity governance, running in a sand-
boxed cloud environment using a container
orchestration platform. NIST defines sev-
eral deployment models in which these log-



ical variations can be implemented in differ-
ent domains such as network environments
or operating systems that perfectly repre-
sent the previous points which can be con-
sulted in the annex B.

Definition of a Zero Trust REST API

NIST provides a set of guidelines for the
protection of APIs in cloud native systems,
recommending the deployment on an API
Gateway that validates the NIST Zero Trust
tenets [7]. NIST also provides a set of stan-
dardized security controls for a REST API,
which are divided into basic and advanced,
being the basic the mandatory standard for
a secure REST API. The complete list for
these security controls can be found at an-
nex A.

To protect a REST API and apply the
necessary set of policies that involve a ZTA
architecture, NIST proposes the use of an
The API gateway is the
system responsible for mapping each re-

API gateway [7].

quest to its target endpoint, to which both
authentication and authorization rules are
applied. It is the front door to the back-end
services of any application on the Internet.

For the development of this thesis, we
will implement a distributed API gateway
to create a secure REST API that verifies
a ZTA using two key technologies, Kuber-
netes and Istio. The official diagram by
NIST for this deployment model can be

seen on figure 2.

Fig. 2. Distributed Gateway according to NIST
(7]

Identity-Based Segmentation

NIST proposes this concept as of the keys
to successfully implement a REST API that
verifies a ZTA. The idea is that every server
should authenticate and authorize both the
end-user identity and the client or software
identity at every HTTP request, ideally at
every single hop of the infrastructure. The
following requirements must be met in or-
der to successfully implement it.

To
provide both data integrity and con-

e IBS:01 Encryption In Transit:

fidentiality and prevent unauthorized
information disclosure or tampering.

e IBS:02 Authentication of the calling
software client: To verify the identity
of the software sending requests and
avoid its spoofing by an attacker.

e IBS:03 Authorization of the calling
software client: To verify that an au-
thenticated client identity can do the
action it pretends to execute.

e IBS:04 Authentication of the end
user: Verify the identity of the en-
tity behind the software to send the
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request, which may a be human or a
non-person entity.

o IBS:05 Authorization of the end user:
To access the resources using the au-
thenticated identity of the end-user to
check that they are allowed to per-
form a certain operation on them.

For implementing IBS:01 we will use
Istio to setup a service mesh for inter-cluster
communications, as well as mutual TLS for
the communication between the cluster ser-
vices and the clients.

For IBS:02 and IBS:03 we will use x509
certificates for each kind of software client
used, effectively implementing a kind of
RBAC or Role-Based Access Control for
the client identities, as user identities will
be grouped by the client software they will
use. These client identities will be used
to segment the traffic to each of the differ-
ent endpoints of the application in the clus-
ter through the Subject Alternative Name or
SAN and the Common Name or the CN of
the x509 certificates using the Kubernetes
Gateway API via HTTPRoutes and Istio as
well as appending the XFCC Header to the
requests once they are forwarded from the
gateway into the service mesh.

For IBS:04 we will setup basic user and
password authentication, based on a shared
secret between the client and the server
API. However, for more advanced deploy-
ments or federated applications OpenlID
Connect is recommended instead.

For IBS:05 we will use JWTs or JSON
Web Tokens, which will be delivered to the
client upon successful authentication and
passed around in the requests as a Authen-
tication Bearer HTTP header.
request authenticated identities will then be

This per-

processed via an Open Policy Agent in-
stance [8], which we will use as PE in the
server API to enforce an authorization pol-
icy defined in Rego loaded into the service.

III1. Case Study Application

For choosing the topic for the reference
example of this zero-trust architecture, we
have decided to go by the motto that it is
better to be a warrior in a garden than a gar-
dener in war. This is why we have chosen a
military tech scenario as proof of concept of
the application of a Zero-Trust application.

However, the knowledge extracted from
this exercise is directly applicable to civil
and peace-time use cases such as finance,
the logistics of autonomous trucks, robo-
taxis, e-commerce deliveries or even a mul-
tiplayer online video game that provides
strong anti-cheating guarantees for e-sport.

The example application will be a drone
telemetry system for an hypothetical army
in which the location of the drones at any
given moment will be monitored.

We will consider three kinds of actors
that will need to produce and consume in-
formation in the system with different de-
grees of confidentiality, the drones them-
selves, the pilots of the drone squads and
officers.

The drones will just be able to consume
orders in the form of a set of coordinates ex-
pressing the GPS location they need to be.
They will also feed into the system the lo-
cation they are currently in to create a feed-
back loop with the pilots. No more informa-
tion about the battlefield should be available
to a drone actor than its location and its tar-
get.



Drones are managed by a single Pilot,
who is able to send orders to a squad of
drones under its command (we are assum-
ing these machines to have a high degree
of autonomy). A Pilot actor will be able to
read the locations of the drones it has been
assigned to and will be able to point them to
new targets. Any Pilot should only access a
partition of the total information about the
state of the battlefield related to his or her
drones, without being able to see the infor-
mation of any other Pilot.

An Officer actor will be able to access
all the information related to the locations
of the drones being managed by any Pilot,
thus having access to a complete view of the
battlefield. However, in this particular use
case an officer will only be able to monitor
the battlefield, without informing any of the
Pilots or giving new targets to the Drones.

We will be using the Officer actor as
the system administrator of the application,
which will be used to provision and prepare
the API with the user credentials for the
Drones and the Pilots as well as the squad
configuration between them.

In addition to this, we will define an
adversarial actor, which will be external to
these systems in order to test and verify the
security of the architecture. The adversary
will launch an attack battery against the sys-
tem, first proving the access to the end-
points without TLS certificates captured,
and then testing them in different situations
for which the certificates for each actor have
been disclosed, such as via drone capture or
leaks from the Officer or one of the Pilots.
Finally, we will consider the case in which a
complete service and user identity has been
spoofed in order to evaluate the authoriza-
tion requirements.

We have provided an example in figure
3 to show the flows of drone location data in
the system. The figure 4 represents the ac-
cess control model for object properties for
entities in the system. These diagrams will
be used to create a fine-grained authoriza-
tion policy using OPA and Rego.
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Fig. 3. Location data flows for a battlefield of 3
drone groups, 3 pilots and 1 officer
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ties in Drone API

IV. Security architecture

For the development of this application we
will consider a DFD or Data Flow Diagram
to express the flow of information through
our system in order to identify threats to
which mitigations need to be applied. This
diagram can be found on the annex C on fig-
ure 11, as well as an enumeration of com-
mon threats provided by STRIDE, OWASP
and NIST for API REST applications that



can be used to deeply understand the threat
model.

We will structure the exposition of the
security architecture in terms of the mea-
sures taken to implement identity-based
segmentation for our REST API. The same
mitigation might overlap different secu-
rity engineering functions, mutual TLS for
example is useful for both implementing
IBS:01 due to the fact that it provides a se-
cure communication channel, but can also
be leveraged for IBS:02 and IBS:03 due to
the fact that it uses signed x509 certificates
of identity for strong authentication, thus
providing attributes such as the Common
Name or the Subject Alternative Names that
have high integrity guarantees, which al-
lows us to use them on the authorization
policy built using Rego and OPA.

In this reference implementation, we
have provided mitigations for threat AP1:06
by achieving secure communications
through the use of Mutual TLS and us-
ing a different certificate of identity per
each of the clients as well as for the server.
The communication inside the Kubernetes
cluster is also protected via a service mesh
managed using Istio, which automatically
implements mutual TLS between the nodes
of the mesh inside the cluster.

Once secure communication is
achieved, we can consider the process of
creating a strong authentication framework
to mitigate threat API:02 via the use of Ba-
sic HTTP authentication and the mutual
authentication that mutual TLS implicitly
provides by establishing a common CA
certificate for client and server certificate
validation. In this case this is enabled by
a shared CA certificate file that both the

legitimate server and clients know.

Threats API:01 and API:05 are similar
in the sense that they are authorization fail-
ures which are to be mitigated by the defi-
nition of a authorization decision policy and
the availability of a PEP that can enforce it.
In this application case study, the main re-
source to authorize access to is the location
of the drones, while there are a couple of
functions that only specific actors should be
able to execute such as the provisioning of
the credentials which should only be made
by an officer. We will elaborate further in
the following subsections.

NIST also proposes specific mitigations
to validate a Zero Trust REST API for pre-
runtime and runtime, which can be checked
out at annex A.

Authentication mechanism

Previous authors make references to
OpenID Connect as the main protocol for
the IAM solution, however due to a re-
stricted time budget and for the sake of
focusing on the granular authorization sys-
tem, the service mesh deployment details
and the mutual TLS certificate deployment
and API implementation, we decided to
use a simpler authentication model based
on a basic user and password exchange.
However, OpenID Connect is a highly rec-
ommended solution for real world deploy-
ments and its incorporation in the refer-
ence implementation has been left for fu-

ture work.

We will divide the authentication mech-
anism into two sections, client software au-
thentication and end-user entity authentica-
tion. A diagram for the full authentication
mechanism can be found in figure 5.



Client software authentication

We will be able to satisfy IBS:01 and
IBS:02 by using mutual TLS to access the
REST APL

This will force both the client and the
server to authenticate each other using mu-
tual TLS according to a common CA that
needs to sign both the client and the server
certificates used.

One of the decisions we had to make
here is the size of the implicit trust zone
for the identity segmentation that can be ap-
plied here.

On the sloppiest scenario, we can use a
single certificate to authenticate any client
This is
the easiest option but also the one that pro-

that has it under its possession.

vides the wider implicit trust zone, given
that many different clients may use the same
certificate as an identity umbrella, only re-
quiring it to be captured once in order for
an adversary to achieve client software au-
thentication to the whole system.

The other extreme is that each sin-
gle client instance has its own certificate,
aligned with the unique identity of the user
entity. This is the most desirable option
from a zero trust perspective, given that
it provides total end-user traceability at
the expense of increasing the management
complexity of both certificates and identi-
ties, thus requiring strong identity gover-
nance tools.

A more practical compromise, which
we will follow on this thesis, is to have
a client certificate for each kind of client,
which aligns with the RBAC authorization
policy we will want to implement for the
client software authorization on the API.

e Drone client certificate
e Pilot client certificate

e Officer client certificate

Without presenting any of these certifi-
cates during mutual TLS, the client will
simply be denied access by the API gate-
way.

End user entity authentication

For each entity on the system, both human
and non-human, we will define username
and password credentials in an automated
manner to satisfy IBS:04.

After establishing a secure communi-
cation using mutual TLS, the entity shall
present their credentials using HTTP Basic
Authentication to a specific login endpoint,
these credentials will be hashed with a salt
in the server and compared against a previ-
ously provisioned set of hash credentials by
an officer. No clear text credentials shall be
stored in the process memory or database.

If there 1s a match, then the client soft-
ware will receive a JWT for further per-
request authentication, without needing the
end user entity to present their credentials
again until they need refresh.

JWTs follow a well known standard ex-
pressed in RFC 7519 which provides strong
integrity guarantees via an authenticated
digital signature using a secret only known
by the API server. This allows the API to
detect if a normal JSON object has been
modified or tampered with, detecting when
an attacker is attempting to replay it [9].
This allows the security architect of the API
to trust the claims stored on the JWT to
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make both authentication and authorization
decisions.

For the implementation of the API, we
will use a middleware developed for the
Echo web framework [10], which will au-
tomatically handle these tokens on each re-

quest.
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Fig. 5. Full authentication flow for both client
software and end-user entity

Authorization mechanism

For the authorization strategy, we will con-
sider two domains for authorization, one
for the system-level for the deployment of
the drone-api and another for application-
specific authorization of each end-user.

Software Authorization

Regarding software authorization for
IBS:03, we need to consider the security

of the client software and the server.

Client Software Authorization

It is not possible to have complete control
over what is being executed on the client
without also having control of the hardware
it is running on, which we will leave out of
the scope of this thesis. The only thing we
have to exercise some level of authorization

is via the access provided by the client TLS
certificates, which will allow us to authorize
connections to specific endpoints.

The easiest way to implement this to im-
plement an specific REST API for each role
in alignment with the software authentica-
tion.

e Drone REST API specific actions,
only authorized if the holder has a
Drone cert.

o Pilot REST API specific actions, only
authorized if the holder has a Pilot
cert.

e Officer REST API specific actions,
only authorized if the holder has an
Officer cert.

A software identifying itself as a Drone
client should never have access to the REST
API endpoints of a Pilot or an Officer, thus
implementing a mutually exclusive access
control policy.

This can be done in a variety of ways,
we decided to use the XFCC Header to
pass the client certificate presented to the
API gateway to the backend Drone API and
parse the CN of the certificate to include it
in our Rego authorization policy.

Server Software Authorization

Regarding software authorization of the
drone-api, we will leverage the authoriza-
tion framework delivered by Kubernetes,
Linux containers and the Linux kernel in or-
der to enforce the minimum privilege prin-
ciple.

This involves using the smallest set of
container Linux capabilities required for the
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process to execute its functions. The con-
tainer image used for the drone API shall be
the Scratch, which is an alias for the most
basic and bare bones container image avail-
able in order to mitigate against living-of-
the-land and supply-chain attacks. The API
server written in Go will be a single stati-
cally linked binary that holds up everything
needed for running the application. In addi-
tion to this, the files system of the running
container will be strictly-read only, without
the possibility of installing additional soft-
ware once the server is deployed, and as
a non-privileged user. These countermea-
sures are a second line of defense for a suc-
cessful exploitation of the API. At the clus-
ter level, this involves providing a K8S Ser-
vice Account, defining a specific Role with
minimal access to the K8S API and a cor-
responding Role Binding between the two
for the pods of the drone-api deployment,
which will limit the interaction with the Ku-
bernetes API to strictly what is required.
The deployment for the drone-api will also
be restricted to its own Kubernetes names-
pace, limiting the access to cluster-wide re-
sources.

End user authorization

In this section we will focus on the fine-
grained authorization policy for the end
user according to application requirements.

To achieve this, we will use OPA and
define a Rego authorization policy. This al-
lows the application developers to decou-
ple authorization policy from system imple-
mentation, allowing for the establishment
of an uniform access control policy. In most
applications the authorization and access
control policy is coupled to the application

implementation right into the code. Over
time the code base evolves and changes are
made, which might lead to parts of the ap-
plication not to follow the same authoriza-
tion rules, leading to an heterogeneous au-
thorization policy and security risks such as
API:01, API:03 and API:05. Centralizing
the authorization policies into a single PE
assures that the same policy is applied to
all the points of the application in which
authorization is required. Decoupling au-
thorization logic from the application logic
also has the advantage of improving testing
of the authorization policy itself, control-
ling for possible edge cases that may break
authorization.

The authorization model used here will
be ABAC, given that the OPA policies exe-
cuted by the PE will take into account the
identity attributes in the JWT to derive if
the action is authorized or not. The pol-
icy is also taking into account the kind of
operations being executed over the data, in
order to mitigate against threat API:05 as
well as API:06 and make sure not only the
users have access to the object properties
they should, but also to execute the actions
they are authorized to.

Given that the main object level to
which the policy is applied are drones, we
will use this policy to return the identifiers
of the drones the user can access. If the pol-
icy returns no drones, then it is assumed that
the operation is not allowed.

For the actual implementation of the
end-user authorization, we will use the
Open Policy Engine, which is a general-
purpose PE that is able to execute a set of
security polices expressed in a policy speci-
fication language called Rego [£]. This Pol-
icy Engine will be executed as a library in-
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side the drone-api. The Rego policy is in-
formed by the authorization model and the
input object, which contains the data that
the policy will use to execute a policy de-
cision.

The input object is essentially a JSON
object that can implement any kind of
schema that can then be used to develop
an arbitrarily complex policy. It can be
static or dynamically generated at runtime
in order to implement context-dependent
authorization policies, which is preferable
from a Zero-Trust perspective due to the
fact that these policies can be informed and
customized according to real-time data and

events.

Lets enumerate here the specific autho-
rization requirements for the determination
of which drone locations should a specific
user access.

e A drone should only be able to pub-
lish its location and consume its tar-
get, never the other way around.

e A pilot should only be able to publish
the target of the drones assigned to
it and read the location of the drone,
and never the other way around.

e An officer will only be able to access
all the drone locations, as well as ex-
clusive provisioning the API.

In addition to this, we are leveraging
X-Forwarded-Client-Certificate or XFCC
headers to inform the back-end about the
client certificate presented at the API gate-
way and using it in the authorization deci-
sion of our logic. After the JWT authenti-
cation, we can fetch the role of the user and
check if the certificate matches with it. If

it doesn’t, we assume this is a spoofing at-
tempt using stolen credentials (API:02) or
a security misconfiguration (API:08), thus
denying access to the REST API.

These policies would be implemented
by the Rego policy exposed in annex E,
which is then run using Open Policy Agent
as a library on the REST API or by dele-
gating the authorization decision to a spe-
cialized service. This way, we can consider
IBS:05 to be successfully implemented.

Rate limiting mechanism

The mitigations available for API:10 are de-
pendent on where the consumption of the
API is occurring. If within the cluster, Is-
tio provides functionalities for rate limit-
ing and circuit breaking mechanisms for the
service mesh. If the consumer is outside the
cluster, such as a abusive clients or an at-
tacker, then the policy engine relies on the
certificate and the user identities to exercise
rate limiting or blocking. If a DDoS attack
is targeting an unprotected endpoint such as
the Login, then the only way to block an
abuse such as an automated bot attack is to
setup a Web Application Firewall in front of
it in a real-life deployment, which is left as
future work.

Request and Response Schema valida-
tion

For the request and response schema we
will use OpenAPI, an interface description
language which will solve multiple prob-
lems. First, it is a REST API specification
language that can be used for both the de-
sign, documentation and versioning of the
API, which is one of the key requirements
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for API security according to NIST [7] in
order to mitigate the threat API:09 as well
as for the documentation of the REST API.
The endpoints, methods, request, responses
data structures and other objects relate to
the model of the application, such as the
coordinates or the provisioning of the bat-
tlefield can be mapped.

The second utility of using OpenAPI is
that it will allow us to generate stubs for the
client and the server for a multitude of pro-
gramming languages, increasing develop-
ment speed of the system and its alignment
and as well as automating the validation of
each of the primitive types of the API. For
this thesis we will use oapi-codegen, which
allows us to generate the server and client
stubs for the HTTP server using the Echo
web framework and HTTP clients as well
as request and response validation during
API runtime, thus allowing us to satisfy the
requirement REC-API-10 and REC-API-13
for API runtime protections.

We have provided an example of the
OpenAPI definition of the provisioning
endpoint used by the officers of the drone
API in annex D.

System Architecture

Two key technologies used for system de-
sign are Kubernetes and Istio. While Ku-
bernetes is the de facto standard for cloud
engineering given that it has emerged as
the best technology to manage workloads
by leveraging container orchestration [11],
Istio provides complementary features that
fall outside the scope of Kubernetes spe-
cific to traffic control, reliability and se-
curity such as mutual TLS communica-
tion between services inside the cluster,

API and ingress gateway configuration,
XFCC header management, circuit break-
ing, load balancing, traffic shaping, service-
to-service authentication and authorization,
rate-limiting and request tracing over the
service mesh [12].

It is important to point out from a threat
model perspective that using an Istio ser-
vice mesh is not free, as any attacker that
can manipulate the istio-system namespace
will be able to take full control of the mesh
itself [13].
in the Kubernetes cluster by segmenting the
istiod deployment, the REST API itself and
the API gateway each their own namespace.

This why access in restricted

This is a logical separation that limits ac-
cess to the cluster API resources. In addi-
tion to this, we have defined a REST API
Role with minimal access control in the
cluster and binded the service account of
the REST API to it as a countermeasure to a
successful exploitation attempt in the REST
API.

Service Mesh

The motivation for implementing a service
mesh in this project is that a multi-node
Kubernetes cluster might have its internal
traffic traverse through many kinds of net-
works, both public and private with differ-
ent degrees of trust. The best way to secure
this traffic is to encrypt it end to end via a
service mesh, which effectively establishes
the Enclave Gateway model described on
annex B as one of the Zero Trust architec-
tures.

Kubernetes has provided the ingress ob-
ject since the beginning of the project, later
versions define the Kubernetes API Gate-
way, which we will use to create the defi-
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nition of the API Gateway given that future
versions of Istio will use this resource defi-
nition to implement Ingress gateways [14].

The Kubernetes API Gateway divides
the configuration of the load balancer into
three new entities.

o The GatewayClass object: Managed
by the cloud infrastructure provider.

e The Gateway object: Managed by the
cluster or API gateway team.

e The HTTPRoute object: Managed by
the microservice developers to define
each of the REST API endpoints.

Istio implements the GatewayClass and
sets up an Envoy proxy as the API Gateway,
which is then injected in the cluster names-
pace where the Gateway object is declared.
This deploys Envoy proxy under the hood to
route the traffic according to the definitions
of different HTTPRoute objects, to trans-
port the requests arriving to the API Gate-
way of the specific HTTP endpoint. This
communication occurs inside the Istio ser-
vice mesh via a network of Envoy prox-
ies, in our reference implementation traffic
arrives to a sidecar in the Drone API pod
where the traffic is authenticated and de-
crypted at the cluster level then forwarded
to the Drone API. In addition to this, we
have configured Istio to enable the XFCC
or X-Forwarded-Client-Cert header, which
allows us to send the certificate used by the
client on the mutual TLS connection to the
backend API, so that we can use it in the
authorization policy.

Resource quota limits

In order to limit the resources consumed
during the operation of the API, resource
limits on the Kubernetes deployment have
been established as well as a basic HPA,
preparing for future work regarding the
scalability of the service once a persistent
data layer is provided.

Error reporting pattern

We will use standard HTTP codes to report
errors in the system to the clients. How-
ever, we have changed 404 codes to 401 to
avoid information disclosure on the API by
an adversary with a stolen certificate and
account. The reason for this is that the
distinction between existence and unautho-
rized access can itself be a kind of infor-
mation leak the adversary might leverage to
obtain information on the system such as
number of drones, to which pilots they be-
long as well as information about the officer
or officers managing the system.

The main error reporting system for the
administrators of the cluster will be logs
written by the container processes involved,
such as the API gateway, the envoy proxy
and the drone api.

Logging and monitoring infrastructure

Logging is strongly dependent on the cloud
administrators and the specific domain of
the application. In this assignment we will
consider logging within the framework of
Kubernetes as every cloud has its own inte-
grated solution, as well as being easily inte-
grated with proprietary ones such as New
Relic, Datadog, Dynatrace, AWS Cloud-
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Watch and many others that are listed by
] under the market for observ-
With this we want to
make it clear that this is a big market and

Gartner [
ability platforms.

that a systematic review of all options is
outside the bounds of this thesis.

The Istio command istioctl also pro-
vides a multitude of observability options
for more complex service meshes and mi-
croservice architectures. It allows seam-
less integration with Envoy Proxy [16],
Graphana [17], Jaeger [I8], Kiali [19],
], Apache Skywalking [21]

and Zipkin [22]. An exposition for the right

Prometheus [

configuration of these tools is left as future
work.

V. Evaluation And Testing

For evaluating the security architecture we
have created a new kind of client that the
adversary would use to breach this specific
application that we will simply call the at-
tacker client or attacker-cli.

It implements an attack battery in which
different levels of breach and access for dif-
ferent roles is assumed. The idea is that the
system needs to keep the enforcement of
the authorization policy as individual cre-
dentials are captured.

e Scenario I: Attempt connection to
the role endpoints without a certifi-
cate. The expected behavior is for the
connection to be reset at the API gate-
way due to mutual TLS failure.

e Scenario 2: The software client cer-
tificate for a particular role has been
disclosed by the adversary, but access
to the drone API endpoints other than

the login endpoint result in HTTP 401
Unauthorized.

e Scenario 3: Both the client certificate
and the user credentials are disclosed
to the adversary, but access to unau-
thorized operations for that role are
forbidden and result in a HTTP 403.

e Scenario 4: Applied only to pilots
and drones, both the client certificate
and the user credentials are disclosed
to the adversary, but access to other
pilots for the case of pilots and other
drones for the case of drones are for-
bidden and result in a HTTP 403 or
401.

On figure 6 we can observe the execu-
tion of this attack battery and the observa-
tion that all the authentication and autho-
rization attacks for each scenario result in
some kind of failure for the attacker. Which
validates that our authentication and autho-
rization systems are working at different
levels of compromise.

Fig. 6. Output returned by the attacker-cli com-

mand
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"i{"altit

: 217, "latitude":267,"longitude" :224}},{"id": "drone-4",
altitude"

"latitude":@,"longitude"”:@}, "target”:{"altitude":0, "lat

latitude":245, "longitude”:324}}, {"id":"drone-3", "location":{"altitude":0, "latit!
o X

de":0,"longitude”:0},"t "altitude":151,"latitude"”:196, "longitude”:172}}, {]
" ati ":0,"latitude”:100, "longitude” : 100}, "target"
:{"altitude":11,"latitude":36,"longitude":96}}1}

Monitoring battlefield as: drone-12025/08/28 19:54:28 {"drones":[{"id":"drone-1"
,"location":{"altitude":50@, "latitude":50, "longitude":50}, "target": {"altitude":1
,"latitude”:36,"longitude”:96}}1}

Fig. 7. Output of officer, pilot and drone clients
from top to bottom

VI. Future Work

Due to the time budget or complexity of im-
plementation, several lines of work are still
open and might be worth exploring in future
R&D efforts.

References exposed in previous work
presents OpenlD Connect as the recom-
mended federated authentication solution,
future work on this thesis involves expand-
ing the reference implementation with this
protocol to authenticate the users. Regard-
ing the hardening of the login endpoint, a
solution against automated brute-force at-
tacks is also left as future work.

The Istio service mesh is a fundamen-
tal part of the security in this setup and its
integrity must be maintained. One possi-
ble line of improvement would be to deploy
the Istio control plane on a different Kuber-
netes cluster from the one in which the man-
aged workloads are being executed, drasti-
cally improving the security of the service
mesh beyond a compromise of the Kuuber-
netes cluster where the services are running.
This is a setup documented by Istio [23]
but which would get outside the scope of
the objectives of this assignment and which
would probably only be worth the overhead

in management and deployment complex-
ity in a multi-cluster large scale deployment
such as the ones maintained by Amazon
Web Services and Azure.

The TLS and mutual TLS security
model are only effective when both the
client and the server are able to authen-
ticate the certificate by a common certifi-
cate authority. In this assignment this was
achieved by means of a shared CA certifi-
cate, but in a real-scale deployment a PKI
should be defined and deployed in other
to scale creation, distribution and repudi-
ation of certificates. An advanced cer-
tificate management solution would also
open the possibility of reducing the implicit
trust zone further by delivering an unique
client certificate to each user of the system,
providing stronger authentication and non-
repudiation guarantees.

In a real deployment, unprotected end-
points such as the login should be protected
using a WAF such as OWASP’s Modsecu-
rity [24]. This has been left out of the as-
signment due to the fact that it falls outside
the implementation of the API itself. How-
ever, such a system could generate valu-
able metrics that might be considered in
more complex Rego authorization policies,
as well as the introduction of a SIEM.

In addition to all of this, the data of the
REST API is currently being stored in the
process memory, so a more scalable and ef-
ficient data management solution that main-
tains current Zero-Trust properties such as
the use of an encrypted key-value or rela-
tional database is needed.
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VII. Conclusion

On this thesis we researched the exist-
ing documentation on Zero-Trust architec-
tures, documented the necessary require-
ments and principles used to implement
one, and applied them to a reference ap-
plication in order to demonstrate how exist-
ing open source and cloud technologies can
be leveraged to implement such architec-
tures while also addressing technical secu-
rity solutions to well-known threats towards
REST APIs. This reference implementation
was them formally tested in order to prove

the strength of both the authentication and
authorization policies.

As a result, a reference Zero-Trust API
that meets all the basic pre-runtime and run-
time protections exposed in annex A was
developed, establishing a proof-of-concept
for future R&D efforts in industry and
academia alike.

All the assets for this work
can be found at a public Github
repository  for  replication  purposes

https://github.com/jairomer/
cybersecurity-master-thesis.
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ANNEX A: RECOMMENDED BASIC AND ADVANCED
PROTECTIONS FOR REST APIS ACCORDING TO NIST

NIST organizes REST API protections in two sections.

1. API Pre-Runtime Protection: Controls applied during design, development and test-
ing.

2. API Runtime Protection: Controls applied per each request and response during the
API operation.

Each section has two levels of protections.

1. Basic Protections: Should be mandatory and pursued immediately.

2. Advanced Protections: Require deeper traffic inspection and the security they pro-
vide usually involve certain tradeoffs such as radical increase in computation or
complex management.

API Pre-Runtime Protections

Basic Protections

e REC-API-1 All APIs must have an API specification
o REC-API-2 API specifications should use an Interface Description Language.
e REC-API-3 APIs should have a well defined request and response schema.

o REC-API-4 A centralized API governance framework shall be established.

Advanced Protections

o REC-API-5 APIs should have a request and response schema-based validations.
o REC-API-6 APIs should have required-permission annotated in the schema.
o REC-API-7 APIs should have their fields annotated with a semantic type.

e REC-API-8 APIs should have their runtime metadata in the API inventory.
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API Runtime Protections

Basic Protections

REC-API-9 API Communication Must Be Encrypted.
REC-API-10 A general schema validation policy shall be applied to each request.

REC-API-11 APIs shall have a robust authentication mechanism and correct pro-
cessing of credentials.

REC-API-12 The end-user and service identities shall be verified at each request.

REC-API-13 Requests and response shall be validated before being processed by

the business logic.

REC-API-14 Incoming requests shall be authenticated, authorized, validated and

finally sanitized in this particular order.
REC-API-15 The API shall enforce resource usage limits.
REC-API-16 The API shall enforce rate limiting to internal callers.

REC-API-17 The API shall enforce fine-grained request and user blocking, without
affecting a legal and non-abusive users.

REC-API-18 The API access control processes shall be monitored.

Advanced Protections

REC-API-19 Field-Level Validation Using API Schema Annotations.
REC-API-20 API Schema Annotations For Authorization.
REC-API-21 Semantic Field Logs and Monitoring.

REC-API-22 Non-Signature Payload Scanning.

REC-API-23 Design Against Resource Enumeration.

REC-API-24 Rate-Limit Resource Enumeration Attacks.
REC-API-25 Limit Sensitive Data Exposure In Response And Logs.

REC-API-26 Block High Impact Requests.
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ANNEX B: REQUIREMENTS FOR ZERO-TRUST
ARCHITECTURES

Tenets of Zero Trust

To create Zero Trust systems, the recommendation of NIST is follow a set of basic
technology-agnostic tenets or requirements [5], which we will summarize here given that
they are relevant for the execution of this thesis.

e ZTA:01 All data sources and computing services are considered resources: A net-
work may be composed of multiple classes of devices.

o ZTA:02 All communication is secured regardless of network location: Access re-
quests from assets located on enterprise-owned network infrastructure must meet
the same security requirements as access requests and communication from any
other non-enterprise-owned network.

o ZTA:03 Access to individual enterprise resources is granted on a per-session ba-
sis: Trust in the requested is evaluated before the access is granted, with the less
privileges needed to complete the task.

o ZTA:04 Access to resources is determined by dynamic policy, including the observ-
able state of client identity, application/service and the requesting asset, and may
include other behavioral and environmental attributes: Examples of these attributes
can be device characteristics, previously observed behavior, time and date, environ-
mental attributes or different kinds of analytics in order to create policy rules, which
is the set of access rules based on attributes that an organization assigns to a subject,
data asset or application.

o ZTA:05 The enterprise monitors and measures the integrity and security posture
of all owned and associated assets: No asset 1s inherently trusted and continuous
diagnostics and mitigation.

o ZTA:06 All resource authentication and authorization are dynamic and strictly en-
forced before access is allowed: An enterprise should have Identity, Credential
and Access Management and asset management systems in place, including multi-
factor authentication for some or all resources.

o ZTA:07 The enterprise collects as much information as possible about the current
state of assets, network infrastructure and communications and uses it to improve
its security posture: An enterprise should collect data about each asset security
posture, network traffic and access requests, process that data and use any insight
gained to improve policy creation and enforcement.
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Assumptions of a ZTA

NIST also defines a set of system architecture requirements to verify the implementation
of ZTA that we will rephrase in a requirement specific language [5].

e NET:01 Enterprise assets shall be assumed to have a basic network connectivity

with basic routing and infrastructure.

e NET:02 Enterprise shall be able to distinguish assets in the network via issued

credentials and information with strong data integrity guarantees.

o NET:03 The enterprise shall observe all network traffic as well as managing the

metadata of the connection.

o NET:04 The enterprise assets shall never be reachable except via an authenticated

connection through a PEP.

o NET:05 The data plane and the control plane of the ZTA’s network shall be logically
separated.

o NET:06 Enterprise assets shall only be reachable from a PEP component.

e NET:07 The PEP shall be the only component that accesses the PA as part of the
business flow being secured.

o NET:08 Remote enterprise assets shall never need to access remote enterprise re-

sources by traversing the enterprise network infrastructure first.

o NET:09 The infrastructure to implement the ZTA access decision process should be

scalable to account for changes in load.

o NET:10 Some enterprise shall not reach certain PEP if the security policy states
s0.

ZTA Deployment Models

It is worth noting that NIST defines several deployment models in which these logical
variations can be implemented in different domains such as network environments or
operating systems. For the purposes of this thesis, we will briefly mention the most inter-
esting ones.

The first is the enclave gateway model, which is generally used in cloud native mi-
croservice architectures [5]. This model fronts the gateway to a resource enclave, to
which access is granted through an agent with all the configuration needed to access the
system. In this model, the agent may be an application installed on a desktop or mobile
device that connects to a backend via an API gateway.
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Fig. 8. Enclave gateway model according to NIST [7]

Another deployment model that NIST proposes is the resource portal model, which is
the most similar to the majority of REST APIs on the web due to the fact that it is agent-
less, allowing for increased connectivity with clients by means of a web browser without
the need of installing a heavy client. Instead, the policy enforcement point is applied at
the gateway as requests arrive into a system. The main disadvantage of this model is that
the owners of the system lose visibility and control over the users of the API while also
exposing the API to the threats of the open internet[5].

Control Plane

Data Plane

Gateway Data
! System [+ Port [*—"| Resource

Fig. 9. Resource portal model according to NIST [7]

Finally, NIST also considers the device application sandboxing model, which lever-
ages the compartmentalization principle to create secure architectures through resource
segmentation. In this model the compartments may be virtual machines or container in-
stances, and the main advantage is that if correctly implemented it will protect the system
from compromised individual assets [5]. We will use this model on the topic of this thesis
at the system level architecture, for which we will use both virtual machines for nodes and
abstractions provided by Kubernetes such as namespaces and pods to orchestrate contain-
ers.
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ANNEX C: REST API CYBERSECURITY RISKS AND THREATS

In order to architect and develop a secure solution of any kind, we need to develop a
threat model.

We will assume for the remaining of this thesis that an attacker can be either a hu-
man with malicious intentions or software with any degree of sophistication, from simple
scripts to advanced Al, that behaves as what we could consider as malware or abusive
behavior, and so we will not make any distinction. We will make the same assumption for
the defender.
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Fig. 11. Data Flow Diagram For The API Application

For categorizing the threats, we will use the general framework given by STRIDE
[25], which involves:

1. Spoofing: An attacker manages to take an identity that does not correspond to them.

2. Tampering: An attacker manages to write or modify data that they should not be
able to.

3. Repudiation: An attacker manages to negate the link between the identity they are
using and a change in the state of a mutable system.

4. Information Disclosure: An attacker successfully manages to read data they should
not be able to.
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5. Denial of service: An attacker manages to deny access from a set of users to a given
service or asset with varying degrees, from degradation to complete permanent un-
availability.

6. Elevation of privilege: An attacker manages to achieve a higher level of authoriza-
tion over the actions of the assets in a system that they should.

Element s T R 1 D E
External entity x x

Data flow X X X

Data store x x* X x

Process X X X X X x

Fig. 12. Mapping of STRIDE threats to DFD entities

As expressed in figure 12, each of the entities on the DFD diagram of the application
have immediate security threats attached to them by default. In the following paragraphs
we will also provide REST API specific threats to be considered.

Given that a significant number of websites on the Internet use REST APIs for inter-
acting with their backend, much of the threats that affect them will also affect REST APIs.
For this reason, OWASP monitors the state of API REST security as one of their concerns
and provides a top 10 of security risks in 2023 [26] we will use in the threat model of
our example application as well as the secure deployment of said application using cloud
technologies.

o APIL:01 Broken Object Level Authorization: This is the risk of not correctly manag-
ing access control for the objects that need to be managed in the API, this leads to
the realization of may different kinds of threats depending on the kind of excessive
access that is given.

o APIL:02 Broken Authentication: This is the risk that a user is able to break authenti-
cation in some way that compromises the system ability to prove his identity from
that of another user.

e API:03 Broken Object Property Level Authorization: On an application we might
find different hierarchies, groups and domains for access control, as well as a dis-
tinction between administrative and regular functions. This risk represents the fail-
ure to correctly manage this complexity from a development perspective such as
excessive permissions for workloads or accounts.

o APIL:04 Unrestricted Resource Consumption: Satisfying API request requires lim-
ited resources such as bandwidth, CPU, memory and storage, which when ex-
hausted can lead to denial of service. Other resources to other APIs that are subject
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to costs per request may also imply an economic impact to the organization, im-
pacting in operational costs.

o APIL:05 Broken Function Level Authorization: Similar to AP14:2023 but applied to
actions or functionalities on an applications instead of access to objects and their
properties.

o APIL:06 Unrestricted Access to Sensitive Business Flows: Business flows are the
functionalities that allow users to achieve a certain objective in the application,
such as buying a ticket for a concert, which can be abused by bots that buy all the
tickets to a concert in order to sell them into secondary markets.

o APIL:07 Server Side Request Forgery/SSRF: Which occur when an API is fetching a
remote resource without validating the user-supplied URI. This allows an attacker
to coerce the application to send a crafted request to a trusted location.

o API:08 Security Misconfiguration: APIs and the systems supporting them typically
contain complex configurations to make the API more customizable. Even if the
API itself is secure, it can be configured in an unsecured manner that enables a
vector for exploitation by an attacker.

o APIL:09 Improper Inventory Management: APIs tend to expose more endpoints than
traditional web applications, making proper and updated documentation very im-
portant. This risk also opens the door for an attacker to exploit what are known as
shadow APIs, which are undocumented, or zombie APIs which are assumed to be
deprecated or retired but still available on the application. Both of these classes can
be problematic because they are outside the awareness of the APl administrators
and can have latent vulnerabilities subject to exploitation.

e APIL:10 Unsafe Consumption of APIs: Developers tend to trust data received from
third-party APIs more than user input, adopting a weaker security standard. An
attacker can compromise a third-party service instead of trying to compromise the
target API directly.

NIST also provides a set of general threats towards REST APIs that we will use to
define the ZTA, which overlap with most of the ones provided by OWASP [7].

One of the main risks that NIST brings up but OWASP ignores is:

e API:11 Lack of Canonicalization of credentials and identities: One of the main
problems that emerge when trying to implement a ZTA comes from the fact that
there exist a multiplicity of authentication and authorization standards such as cer-
tificates, SPIFFE identities, mutual TLS or JWTs. The solution is the standardiza-
tion of the credentials that the application implemented at the edge of the system,
in the API Gateway, before deploying additional controls.
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ANNEX D: OPENAPI SPECIFICATION

We are providing here an example of an OpenAPI specification used in the reference
application for illustration purposes for the reader.

The following is an example for the battlefield provision endpoint of the REST API.

/battlefield/provision:
post:
summary: An officer will use this endpoint to provision resources
for a battlefield.
operationId: BattlefieldProvision
security:
- bearerAuth: []
requestBody:
required: true
content:
application/json:
schema:
$ref: ’#/components/schemas/BattlefieldProvision’

responses:
7200’ :
description: OK
content:
application/json:
schema:

$ref: ’#/components/schemas/BattlefieldData’
7403’ :
description: Forbidden Access
7400’ :
description: Bad Request

This is an example of a data structure definition for the API.

BattlefieldProvision:
type: object
properties:
credentials:
type: array
items:
$ref: ’#/components/schemas/UserProvision’
pilots:
type: array
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items:
$ref: ’#/components/schemas/PilotProvisioning’
required:
- credentials
- pilots
UserProvision:
type: object
properties:
user:
type: string
password:
type: string
role:
type: string

enum: ["officer", "pilot", "drone"]
required:
- user
- password
- role
PilotProvisioning:

type: object
properties:
id:
type: string
example: pilot-x
drones:
type: array
items:
$ref: ’#/components/schemas/DroneData’
required:
- id
- drones



ANNEX E: REGO AUTHORIZATION POLICY

This annex contains the authorization decision policy used in the reference API im-

plementation.
package battlefield.authz

# default deny unless explicitly allowed
default allow = false

# A drone can only have access to its ow
drones[drone] if {

user := input.request.user.id
role := input.request.user.role
op := input.request.user.operation

p := input.battlefield.pilots[_]

role == "drone"

p.drones[_] == user

# Allowed operations

op == { "get-target", "set-location"
drone := user

# A pilot can access a drone if the dron
drones[drone] if {

user := input.request.user.id

role := input.request.user.role

op := input.request.user.operation
role == "pilot"

p := input.battlefield.pilots[_]
p.id == user

# Allowed operations

n data.

, "get-battlefield"}[_]

e belongs to them.

op == {"set-target", "get-battlefield"}[_]

drone := p.drones[_]

# An officer can access data from all drones in the battlefield.

drones[drone] if {
user := input.request.user.id
role := input.request.user.role
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op := input.request.user.operation

role == "officer"

p = input.battlefield.pilots[_]

# Allowed operations

op == {"get-battlefield", "provisioning"}[_]
drone := p.drones[_]

allow if {
count (drones) > 0
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